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Abstract
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marginal products of labor and capital across plants within narrowly-defined industries in China
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I. Introduction 
 

Large differences in output per worker between rich and poor countries have been 

attributed, in no small part, to differences in Total Factor Productivity (TFP).1  The 

natural question then is: what are the underlying causes of these large TFP differences?  

Research on this question has largely focused on differences in technology within 

representative firms.  For example, Howitt (2000) and Klenow and Rodríguez-Clare 

(2005) show how large TFP differences can emerge in a world with slow technology 

diffusion from advanced countries to other countries.  These are models of within-firm 

inefficiency, with the inefficiency varying across countries. 

A recent paper by Restuccia and Rogerson (2008) takes a different approach.  

Instead of focusing on the efficiency of a representative firm, they suggest that 

misallocation of resources across firms can have important effects on aggregate TFP.  For 

example, imagine an economy with two firms that have identical technologies but in 

which the firm with political connections benefits from subsidized credit (say from a 

state-owned bank) and the other firm (without political connections) can only borrow at 

high interest rates from informal financial markets.  Assuming that both firms equate the 

marginal product of capital with the interest rate, the marginal product of capital of the 

firm with access to subsidized credit will be lower than the marginal product of the firm 

that only has access to informal financial markets.  This is a clear case of capital 

misallocation: aggregate output would be higher if capital was reallocated from the firm 

with a low marginal product to the firm with a high marginal product.  The misallocation 

of capital results in low aggregate output per worker and TFP. 

Many institutions and policies can potentially result in resource misallocation.   

For example, the McKinsey Global Institute (1998) argues that a key factor behind low 

productivity in Brazil’s retail sector is labor market regulations driving up the cost of 

labor for supermarkets relative to informal retailers.  Despite their low productivity, the 

lower cost of labor faced by informal sector retailers makes it possible for them to 

command a large share of the Brazilian retail sector.  Lewis (2004) describes many 

similar case studies from the McKinsey Global Institute.   

                                                 
1 See Caselli (2005), Hall and Jones (1999), and Klenow and Rodríguez-Clare (1997).   



 3

Our goal in this paper is to provide quantitative evidence on the potential impact 

of resource misallocation on aggregate TFP.   We use a standard model of monopolistic 

competition with heterogeneous firms, essentially Melitz (2003) without international 

trade, to show how distortions that drive wedges between the marginal products of capital 

and labor across firms will lower aggregate TFP.2  A key result we exploit is that revenue 

productivity (the product of physical productivity and a firm’s output price) should be 

equated across firms in the absence of distortions.  To the extent revenue productivity 

differs across firms, we can use it to recover a measure of firm-level distortions. 

We use this framework to measure the contribution of resource misallocation to 

aggregate manufacturing productivity in China and India versus the U.S.  China and India 

are of particular interest not only because of their size and relative poverty, but because 

they have carried out reforms that may have contributed to their rapid growth in recent 

years.3  We use plant-level data from the Chinese Industrial Survey (1998-2005), the 

Indian Annual Survey of Industries (1987-1994) and the U.S. Census of Manufacturing 

(1977, 1982, 1987, 1992, and 1997) to measure dispersion in the marginal products of 

capital and labor within individual 4-digit manufacturing sectors in each country.  We 

then measure how much aggregate manufacturing output in China and India could 

increase if capital and labor were reallocated to equalize marginal products across plants 

within each 4-digit sector to the extent observed in the U.S.  The U.S. is a critical 

benchmark for us, as there may be measurement error and factors omitted from the model 

(such as adjustment costs and markup variation) that generate gaps in marginal products 

even in a comparatively undistorted country such as the U.S.   

We find that moving to “U.S. efficiency” would increase TFP by 30-50% in 

China and 40-60% in India.  The output gains would be roughly twice as large if capital 

accumulated in response to aggregate TFP gains.  We find that deteriorating allocative 

efficiency may have shaved 2% off Indian manufacturing TFP growth from 1987 to 

1994, whereas China may have boosted its TFP 2% per year over 1998-2005 by 

                                                 
2 In terms of the resulting size distribution, the model is a cousin to the Lucas (1978) span of control model.   
 
3 For discussion of Chinese reforms see Young (2000, 2003) and The Economist (2006a).  For Indian 
reforms see Kochar et al. (2006), The Economist (2006b), and Aghion et al. (2008).  Dobson and Kashyap 
(2006), Farrell and Lund (2006), Allen et al. (2007), and Dollar and Wei (2007) discuss how capital 
continues to be misallocated in China and India.  
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winnowing its distortions.  In both India and China, larger plants within industries appear 

to have higher marginal products, suggesting they should expand at the expense of 

smaller plants.  The pattern is much weaker in the U.S. 

Although Restuccia and Rogerson (2008) is the closest predecessor to our 

investigation in model and method, there are many others.4  In addition to Restuccia and 

Rogerson, we build on three papers in particular.  First, we follow the lead of Chari, 

Kehoe and McGrattan (2007) in inferring distortions from the residuals in first order 

conditions.  Second, the distinction between a firm’s physical productivity and its 

revenue productivity, highlighted by Foster, Haltiwanger, and Syverson (2008), is central 

to our estimates of resource misallocation.  Third, Banerjee and Duflo (2005) emphasize 

the importance of resource misallocation in understanding aggregate TFP differences 

across countries, and present suggestive evidence that gaps in marginal products of 

capital in India could play a large role in India’s low manufacturing TFP relative to the 

U.S.5  

The rest of the paper proceeds as follows.  We sketch a model of monopolistic 

competition with heterogeneous firms to show how the misallocation of capital and labor 

can lower aggregate TFP.  We then take this model to the Chinese, Indian, and U.S. plant 

data to try to quantify the drag on productivity in China and India due to misallocation in 

manufacturing.  We lay out the model in section II, describe the datasets in section III, 

and present potential gains from better allocation in section IV.  In section V we try to 

assess whether greater measurement error in China and India could explain away our 

results.  In section VI we make a first pass at relating observable policies to allocative 

efficiency in China and India.  In section VII we explore alternative explanations besides 

policy distortions and measurement error.  We offer some conclusions in section VIII. 

                                                 
4 A number of other authors have focused on specific mechanisms that could result in resource 
misallocation.  Hopenhayn and Rogerson (1993) studied the impact of labor market regulations on 
allocative efficiency; Lagos (2006) is a recent effort in this vein.  Caselli and Gennaioli (2003) and Buera 
and Shin (2008) model inefficiencies in the allocation of capital to managerial talent, while Guner, Ventura 
and Xu (2008) model misallocation due to size restrictions.  Parente and Prescott (2000) theorize that low 
TFP countries are ones in which vested interests block firms from introducing better technologies.  
 
5 See Bergoeing, Kehoe, Kehoe, and Soto (2002), Galindo, Schiantarelli, and Weiss (2007), Bartelsman, 
Haltiwanger, and Scarpetta (2008), and Alfaro, Charlton and Kanczuk (2008) for related empirical 
evidence in other countries. 
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II. Misallocation and TFP 
 

This section sketches a standard model of monopolistic competition with 

heterogeneous firms to illustrate the effect of resource misallocation on aggregate 

productivity.  In addition to differing in their efficiency levels (as in Melitz, 2003), we 

assume that firms potentially face different output and capital distortions.   

We assume there is a single final good Y  produced by a representative firm in a 

perfectly competitive final output market.  This firm combines the output sY  of S  

manufacturing industries using a Cobb-Douglas production technology: 
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The production function for each differentiated product is given by a Cobb-Douglas 

function of firm TFP, capital, and labor: 
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Note that capital and labor shares are allowed to differ across industries (but not across 

firms within an industry).6 

Since there are two factors of production, we can separately identify distortions 

that affect both capital and labor from distortions that change the marginal product of one 

of the factors relative to the other factor of production.  We will denote distortions that 

increase the marginal products of capital and labor by the same proportion as an output 

distortion Yτ .  For example, Yτ  would be high for firms that face government restrictions 

on size or high transportation costs, and low in firms that benefit from public output 

subsidies.  In turn, we will denote distortions that raise the marginal product of capital 

relative to labor as the capital distortion Kτ .  For example, Kτ  would be high for firms 

that do not have access to credit, but low for firms with access to cheap credit (by 

business groups or state-owned banks). 

Profits are given by 

 

(2.5) (1 ) (1 )si Ysi si si si Ksi siP Y wL RKπ τ τ= − − − + . 

 
Note that we assume all firms face the same wage, an issue we will return to later.  Profit 

maximization yields the standard condition that the firm’s output price is a fixed markup 

over its marginal cost: 
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The capital-labor ratio, labor allocation, and output are given by: 
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6  In section VII below (“Alternative Explanations”) we relax this assumption by replacing the plant-
specific capital distortion with plant-specific factor shares. 
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The allocation of resources across firms depends not only on firm TFP levels, but also on 

the output and capital distortions they face.  To the extent resource allocation is driven by 

distortions rather than firm TFP, this will result in differences in the marginal revenue 

products of labor and capital across firms.  The marginal revenue product of labor is 

proportional to revenue per worker: 
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The marginal revenue product of capital is proportional to the revenue-capital ratio: 
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Intuitively, the after-tax marginal revenue products of capital and labor are equalized 

across firms.  The before-tax marginal revenue products must be higher in firms that face 

disincentives, and can be lower in firms that benefit from subsidies. 

We are now ready to derive an expression for aggregate TFP as a function of the 

misallocation of capital and labor.   We first solve for the equilibrium allocation of 

resources across sectors:7 
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7 To derive sK  and sL  we proceed as follows.  First, we derive the aggregate demand for capital and labor 
in a sector by aggregating the firm-level demands for the two factor inputs.  We then combine the aggregate 
demand for the factor inputs in each sector with the allocation of total expenditure across sectors. 
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can then express aggregate output as a function of SK , SL , and industry TFP:8 
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To determine the formula for industry productivity TFPs, it is useful to show that firm-

specific distortions can be measured by the firm’s revenue productivity.  It is typical in 

the productivity literature to have industry deflators but not plant-specific deflators.  

Foster, Haltiwanger and Syverson (2008) stress that, when industry deflators are used, 

differences in plant-specific prices show up in the customary measure of plant TFP.  

They stress the distinction between “physical productivity”, which they denote TFPQ, 

and “revenue productivity”, which they call TFPR.  The use of a plant-specific deflator 

yields TFPQ, whereas using an industry deflator gives TFPR.   

The distinction between physical and revenue productivity is vital for us too.  We 

define these objects as follows:9 
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8 We combine the aggregate demand for capital and labor in a sector, the expression for the price of 
aggregate industry output, and the expression for the price of aggregate output. 
 
9 To crudely control for differences in human capital we measure labor input as the wage bill, which we 
denote as the product of a common wage per unit of human capital w and effective labor input Lsi. 
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In our simple model, TFPR does not vary across plants within an industry unless plants 

face capital and/or output distortions.  In the absence of distortions, more capital and 

labor should be allocated to plants with higher TFPQ to the point where their higher 

output results in a lower price and the exact same TFPR as at smaller plants.  Using 

(2.10) and (2.11), plant TFPR is proportional to a geometric average of the plant’s 

marginal revenue products of capital and labor:10 
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High plant TFPR is a sign that the plant confronts barriers that raise the plant’s marginal 

products of capital and labor, rendering the plant smaller than optimal.   

With the expression for TFPR in hand, we can express industry TFP as   
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revenue product of capital and labor in the sector.11  If marginal products were equalized 

across plants, TFP would be ( )
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we use for our empirical estimates.  Appendix A shows that we would arrive at a similar 

expression to (2.15) if we assumed a Lucas span-of-control model rather than 

monopolistic competition.   

When A (≡ TFPQ) and TFPR are jointly log-normally distributed, there is a 

simple closed form expression for aggregate TFP: 

 

                                                 
10 

1 1

1 1 1
(1 )1

( ) 1

s s s s s

si
si si Ksi

S S S S Ysi

TFPR
MRPK MRPL R

w

α α α α ασ
σ α α α

τ
α τ

− −

==
− − −

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

11 
1 1

1
1 1 1
1 1 1

s s

s s
M MKsi si si si si
i i

S Ysi s s S Ysi s s

s
P Y P YRTFPR
PY PY

α α
τ

α τ α τ= =

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+

= ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑  



 10

(2.16) ( )1

1

1log log var log .
1 2

sM

s si si
i

TFP A TFPRσ σ
σ

−

=

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑  

 
 
In this special case, the negative effect of distortions on aggregate TFP can be 

summarized by the variance of log TFPR.  Intuitively, the extent of misallocation is 

worse when there is greater dispersion of marginal products.     

       We note several things about the effect of misallocation on aggregate TFP in this 

model.  First, from (2.12) and (2.13), the shares of aggregate labor and capital in each 

sector are unaffected by the extent of misallocation as long as average marginal revenue 

products are unchanged.  Our Cobb-Douglas aggregator (unit elastic demand) is 

responsible for this property (an industry that is 1% more efficient has a 1% lower price 

index and 1% higher demand, which can be accommodated without adding or shedding 

inputs).   We later relax the Cobb-Douglas assumption to see how much it matters.  

Second, we have conditioned on a fixed aggregate stock of capital.  Because the 

rental rate rises with aggregate TFP, we would expect capital to respond to aggregate 

TFP (even with a fixed saving and investment rate).  If we endogenize K by invoking a 

consumption Euler equation to pin down the long run rental rate R, the output elasticity 

with respect to aggregate TFP is 
1

1
1 S

s S Sα θ=− ∑
.  Thus the effect of misallocation on 

output is increasing in the average capital share.  This property is reminiscent of a one 

sector neoclassical growth model, wherein increases in TFP are amplified by capital 

accumulation so that the output elasticity with respect to TFP is 1/(1 )α− . 

 Third, we will assume that the number of firms in each industry is not affected by 

the extent of misallocation.  In an Appendix available upon request, we show that the 

number of firms would be unaffected by the extent of misallocation in a model of 

endogenous entry in which entry costs take the form of a fixed amount of labor.12 

                                                 
12 We assume entrants do not know their productivity or distortions before expending entry costs, only the 
joint distribution of distortions and productivity they will draw from.  We also follow Melitz (2003) and 
Restuccia and Rogerson (2008) in assuming exogenous exit among producers.  Unlike Melitz, however, we 
do not have overhead costs.  Due to the overhead costs in Melitz, some firms exit after spending entry costs 
but before commencing production, thereby creating an endogenous form of exit that truncates the left tail 
of the productivity distribution.  We leave it as an important topic for future research to investigate the 
impact of distortions on aggregate productivity and welfare through endogenous entry and exit. 
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III. Datasets for India, China and the U.S.  
 

Our data for India are drawn from India’s Annual Survey of Industries (ASI) 

conducted by the Indian government’s Central Statistical Organisation (CSO).  The ASI 

is a census of all registered manufacturing plants in India with more than 50 workers (100 

if without power) and a random one-third sample of registered plants with more than 10 

workers (20 if without power) but less than 50 (or 100) workers.  For all calculations we 

apply a sampling weight so that our weighted sample reflects the population.  The survey 

provides information on plant characteristics over the fiscal year (April of a given year 

through March of the following year).  We use the ASI data from the 1987-1988 through 

1994-1995 fiscal years.  The raw data consists of around 40,000 plants in each year. 

The variables in the ASI we use are the plant’s industry (4-digit ISIC), labor 

compensation, value-added, age (based on reported birth year), and book value of the 

fixed capital stock.   Specifically, the ASI reports the plant’s total wage payments, bonus 

payments, and the imputed value of benefits.  Our measure of labor compensation is the 

sum of wages, bonuses, and benefits.  In addition, the ASI reports the book value of fixed 

capital at the beginning and end of the fiscal year net of depreciation.  We take the 

average of the net book value of fixed capital at the beginning and end of the fiscal year 

as our measure of the plant’s capital.  We also have ownership information from the ASI, 

although the ownership classification does not distinguish between foreign owned and 

domestic plants.     

Our data for Chinese firms (not plants) are from Annual Surveys of Industrial 

Production from 1998 through 2005 conducted by the Chinese government’s National 

Bureau of Statistics (NBS).  The Annual Survey of Industrial Production is a census of all 

non-state firms with more than 5 million Yuan in revenue (about $600,000) plus all state-

owned firms.  The raw data consists of over 100,000 firms in 1998 and grows to over 

200,000 firms in 2005.  Hereafter we often refer to Chinese firms as “plants”. 

The information we use from the Chinese data are the plant’s industry (again at 

the 4-digit level), age (again based on reported birth year), ownership, wage payments, 

value-added, export revenues, and capital stock.  We define the capital stock as the book 

value of fixed capital net of depreciation.  As for labor compensation, the Chinese data 



 12

only reports wage payments; it does not provide information on non-wage compensation.  

The median labor share in plant-level data is roughly 30%, which is significantly lower 

than the aggregate labor share in manufacturing reported in the Chinese input-output 

tables and the national accounts (roughly 50%).  We therefore assume that non-wage 

benefits are a constant fraction of a plant’s wage compensation, where the adjustment 

factor is calculated such that the sum of imputed benefits and wages across all plants 

equals 50% of aggregate value-added.  We also have ownership status for the Chinese 

plants.  Chinese manufacturing had been predominantly state-run or state-involved, but 

was principally private by the end of our sample.13 

Our main source for U.S. data is the Census of Manufactures from 1977, 1982, 

1987, 1992, and 1997 conducted by the U.S. Bureau of the Census.  Befitting their name, 

the Census covers all manufacturing plants.  We drop small plants with limited 

production data (Administrative Records), leaving over 160,000 plants in each year.  The 

information we use from the U.S. Census are the plant’s industry (again at the 4-digit 

level), labor compensation (wages and benefits), value-added, export revenues, and 

capital stock.  We define the capital stock as the average of the book value of the plant’s 

machinery and equipment and structures at the beginning and at the end of the year.  The 

U.S. data does not provide information on plant age.  We impute the plant’s age by 

determining when the plant appears in the data for the first time.14 

For our computations we set industry capital shares to those in the corresponding 

U.S. manufacturing industry.  As a result, we drop non-manufacturing plants and plants 

in industries without a close counterpart in the U.S.  We also trim the 1% tails of plant 

productivity and distortions in each country-year to make the results robust to outliers.  

Later we check robustness to adjusting the book values of capital for inflation. 

 

                                                 
13 Our data may understate the extent of privatization.  Dollar and Wei (2007) conducted their own survey 
of Chinese firms in 2005, and found that 15% of all firms were officially classified as state-owned who had 
in fact been privatized. 
 
14 For the plants in the Annual Survey of Manufactures (ASM), we use the annual data of the ASM (starting 
with the 1963 ASM) to identify the plant’s birth year.  For the plants that are not in the ASM, we assume 
the birth year is the year the plant first appears in the quincennial Census of Manufactures minus 3 years. 
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IV. Potential Gains from Reallocation  
 

In order to calculate the effects of resource misallocation, we need to back out key 

parameters (industry output shares, industry capital shares, and the firm-specific 

distortions) from the data.  We proceed as follows: 

We set the rental price of capital (excluding distortions) to R = 0.10.  We have in 

mind a 5% real interest rate and a 5% depreciation rate.  The actual cost of capital faced 

by plant i in industry s is denoted (1 )Ksi Rτ+ , so it differs from 10% if 0Ksiτ ≠ .  Because 

our hypothetical reforms collapse Ksiτ to its average in each industry, the attendant 

efficiency gains do not depend on R.  If we have set R incorrectly, it affects only the 

average capital distortion, not the liberalization experiment. 

We set the elasticity of substitution between plant value added to σ = 3.  The 

gains from liberalization are increasing in σ, as is explicit in (2.16), so we made this 

choice conservatively.  Estimates of the substitutability of competing manufactures in the 

trade and industrial organization literatures typically range from 3 to 10 (e.g., Broda and 

Weinstein 2006, Hendel and Nevo 2006).  Later we entertain the higher value of σ = 5 as 

a robustness check.  Of course, the elasticity surely differs across goods (Broda and 

Weinstein report lower elasticities for more differentiated goods), so our single σ is a 

strong simplifying assumption. 

As mentioned, we set the elasticity of output with respect to capital in each 

industry ( sα ) to be one minus the labor share in the corresponding industry in the U.S.   

We do not set these elasticities based on labor shares in the Indian and Chinese data 

precisely because we think distortions are potentially important in China and India.  We 

cannot separately identify the average capital distortion and the capital production 

elasticity in each industry.  We adopt the U.S. shares as the benchmark because we 

presume the U.S. is comparatively undistorted (both across plants and, more to the point 

here, across industries).  Our source for the U.S. shares is the NBER Productivity 

Database, which is based on the Census and Annual Surveys of Manufactures.  One well-

known issue with these data is that payments to labor omit fringe benefits and employer 

Social Security contributions.  The CM/ASM manufacturing labor share is about 2/3 

what it is in manufacturing according to the National Income and Product Accounts, 
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which incorporate non-wage forms of compensation.  We therefore scale up each 

industry’s CM/ASM labor share by 3/2 to arrive at the labor elasticity we assume for the 

corresponding U.S., Indian and Chinese industry. 

One issue that arises when translating factor shares into production elasticities is 

the division of rents from markups in these differentiated good industries.  Because we 

assume a modest σ of 3, these rents are large.  We therefore assume these rents show up 

as payments to labor (managers) and capital (owners) pro rata in each industry.  In this 

event our assumed value of σ  has no impact on our production elasticities. 

Based on the other parameters and the plant data, we infer the distortions and 

productivity for each plant in each country-year as follows: 
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Equation (4.1) says we infer the presence of a capital distortion when the ratio of labor 

compensation to the capital stock is high relative to what one would expect from the 

output elasticities with respect to capital and labor.  Recall that a high labor distortion 

would show up as a low capital distortion.  Similarly, expression (4.2) says we deduce an 

output distortion when labor’s share is low compared to what one would think from the 

industry elasticity of output with respect to labor (and the adjustment for rents).  A 

critical assumption embedded in (4.2) is that observed value added does not include any 

explicit output subsidies or taxes. 

TFP in (4.3) warrants more explanation.  First, the scalar is ( )
1

11 /s
s ss sw PPY σακ −−−= .  

Although we do not observe sκ , relative productivities – and hence reallocation gains – 

are unaffected by setting 1sκ =  for each industry s.  Second and related, we do not 
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observe each plant’s real output siY  but rather its nominal output si siP Y .  Plants with high 

real output, however, must have a lower price to explain why buyers would demand the 

higher output.  We therefore raise si siP Y  to the power /( 1)σ σ − to arrive at siY .  That is, 

we infer price vs. quantity from revenue and an assumed elasticity of demand.  Equation 

(4.3) requires only our assumptions about technology and demand plus profit 

maximization; we need not assume anything about how inputs are determined.  Third, for 

labor input we use the plant’s wage bill rather than its employment to measure siL .  

Earnings per worker may vary more across plants because of differences in hours worked 

and human capital per worker than because of worker rents.  Still, as a later robustness 

check we measure siL  as employment. 

Before calculating the gains from our hypothetical liberalization, we trim the 1% 

tails of ( )log /si sTFPR TFPR and ( )log si sA A across industries.  That is, we pool all 

industries and trim the top and the bottom 1% of plants within each of the pools.  We 

then recalculate swL , sK , and s sPY  as well as sTFPR  and sA .  At this stage we calculate 

the industry shares /s s sPY Yθ = . 

Figure 1 plots the distribution of TFPQ, 
1

1log si s sA M Aσ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

, for the latest year in 

each country:  India in 1994, China in 2005, and the U.S. in 1997.  There is manifestly 

more TFPQ dispersion in India than in China, but this could reflect the different sampling 

frames (small private plants are underrepresented in the Chinese survey).  The U.S. and 

India samples are more comparable.  The left-tail of TFPQ is far thicker in India than the 

U.S., consistent with policies favoring the survival of inefficient plants in India relative to 

the U.S.  Table 1 shows that these patterns are consistent across years and several 

measures of dispersion of log(TFPQ): the standard deviation, the 75th minus the 25th 

percentiles, and the 90th minus the 10th percentiles.  The ratio of 75th to 25th percentiles of 

TFPQ in the latest year are 5.0 in India, 3.6 in China, and 3.2 in the U.S. (exponentials of 

the corresponding numbers in Table 2).  For the U.S., our TFPQ differences are much 

larger than those documented by Foster, Halitwanger and Syverson (2008) – they report a 

standard deviation of around 0.22 compared to ours of around 0.80.  As we describe in 
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Appendix B, our measure of TFPQ should reflect the quality and variety of a plant’s 

products, not just its physical productivity.  And our results cover all industries, whereas 

Foster et al. analyze a dozen industries specifically chosen because their products are 

homogenous. 

Figure 2 plots the distribution of TFPR (specifically, ( )log / ssiTFPR TFPR ) for 

the latest year in each country.  There is clearly more dispersion of TFPR in India than in 

the U.S.  Even China, despite not fully sampling small private establishments, exhibits 

notably greater TFPR dispersion than the U.S.  Table 2 provides TFPR dispersion 

statistics for a number of country-years.  The ratio of 75th to 25th percentiles of TFPR in 

the latest year are 2.2 in India, 2.3 in China, and 1.7 in the U.S.  The ratios of 90th to 10th 

percentiles of TFPR are 5.0 in India, 4.9 in China and 3.3 in the U.S.  These numbers are 

consistent with greater distortions in China and India than the U.S.15 

For India and China, Table 3 gives the cumulative percentage of the variance of 

TFPR (within industry-years) explained by dummies for ownership (state ownership 

categories), age (quartiles), size (quartiles), and region (provinces or states).  The results 

are pooled for all years, and are cumulative in that “age” includes dummies for both 

ownership and age, and so on.  Ownership is less important for India (around 0.6% of the 

variance) than in China (over 5%).  All four sets of dummies together account for less 

than 5% of the variance of TFPR in India and 10% of the variance of TFPR in China. 

Although it does not fit well into our monopolistically competitive framework, it 

is useful to ask how government-guaranteed monopoly power might show up in our 

measures of TFPQ and TFPR.  Plants that charge high markups should evince higher 

TFPR levels.  If they are also protected from entry of nearby competitors, they may also 

exhibit high TFPQ levels.  Whereas we frame high TFPR plants as being held back by 

policy distortions, such plants may in fact be happily restricting their output.  Still, such 

variation in TFPR is socially inefficient, and aggregate TFP would be higher if such 

plants expanded their output. 

                                                 
15 Hallward-Driemeier, Iarossi and Sokoloff (2002) similarly report more TFP variation across plants in 
poorer East Asian nations (Indonesia and the Philippines vs. Thailand, Malaysia and South Korea).   
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We next calculate “efficient” output in each country so we can compare it with 

actual output levels.  If marginal products were equalized across plants in a given 

industry, then industry TFP would be ( )
1

11
1
sM

s sii
A A σσ −−

=
= ∑ .  For each industry, we 

calculate the ratio of actual TFP (2.15) to this efficient level of TFP, and then aggregate 

this ratio across sectors using our Cobb-Douglas aggregator (2.1): 
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We freely admit this exercise heroically makes no allowance for measurement error or 

model misspecification.  Such errors could lead us to overstate room for efficiency gains 

from better allocation.  With these caveats firmly in mind, Table 4 provides % TFP gains 

in each country from fully equalizing TFPR across plants in each industry.  We provide 

three years per country.  Full liberalization, by this calculation, would boost aggregate 

manufacturing TFP by 86-115% in China, 100-128% in India, and around 30-43% in the 

U.S.  If measurement and modeling errors are to explain these results, they clearly have 

to be much bigger in China and India than the U.S.16 

Figure 3 plots the “efficient” vs. actual size distribution of plants in the latest year.  

Size here is measured as plant value added.  In all three countries the hypothetical 

efficient distribution is more dispersed than the actual one.  In particular, there should be 

fewer mid-sized plants and more small and large plants.  Table 5 shows how the size of 

initially big vs. small plants would change if TFPR were equalized in each country.  The 

entries are un-weighted shares of plants.  The rows are initial (actual) plant size quartiles, 

and the columns are bins of efficient plant size relative to actual size: 0-50% (the plant 

should shrink by a half or more), 50-100%, 100-200%, and 200+% (the plant should at 

least double in size).  In China and India the most populous column is 0-50% for every 

initial size quartile.  Although average output rises substantially, many plants of all sizes 

would shrink.  Thus many state-favored behemoths in China and India would be 

                                                 
16 In India, the variation over time is not due to the smaller, sampled plants moving in and out of the 
sample.  When we look only at larger, census plants the gains are 89-123%. 
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downsized.  Still, initially-large plants are less likely to shrink and more likely to expand 

in both China and India (a pattern much less pronounced in the U.S.).  Thus TFPR 

increases with size more strongly in China and India than in the U.S..  The positive size-

TFPR relation in India is consistent with Banerjee and Duflo’s (2005) contention that 

Indian policies constrain its most efficient producers and coddle its least efficient ones. 

Although we expressed the distortions in terms of output ( Ysiτ ) and capital relative 

to labor ( Ksiτ ), in Appendix C we show these are equivalent to a particular combination 

of labor ( *
Lsiτ ) and capital ( *

Ksiτ ) distortions.  In the Appendix we report that more 

efficient (higher TFPQ) plants appear to face bigger distortions on both capital and labor. 

In Table 6 we report the % TFP gains in China and India relative to those in the 

U.S. in 1997 (a conservative point of comparison as U.S. gains are largest in 1997).  For 

China, hypothetically moving to “U.S. efficiency” might have boosted TFP by 50% in 

1998, 37% in 2001, and 30% in 2005.  Compared to the 1997 U.S. benchmark, Chinese 

allocative efficiency improved 15% (1.5/1.3) from 1998 to 2005, or 2.0% per year.  For 

India, meanwhile, hypothetically moving to U.S. efficiency might have raised TFP 

around 40% in 1987 or 1991, and 59% in 1994.  Thus we find no evidence of improving 

allocations in India over 1987 to 1994.  The implied decline in allocative efficiency of 

12%, or 1.8% per year from 1987 to 1994, is surprising given that many Indian reforms 

began in the late 1980s. 

How do these implied TFP gains from reallocation compare to the actual TFP 

growth observed in China and India?  For the latter, the closest estimates we could find 

are by Bosworth and Collins (2007).  They report Chinese industry TFP growth of 6.2% 

per year from 1993-2004 and Indian industry TFP growth of 0.3% per year from 1978-

1993.  Thus our point estimate for China (2% per year) would suggest that perhaps 1/3 of 

its TFP growth could be attributed to better allocation of resources.  For India, our 

evidence for worsening allocations might help explain its minimal TFP growth. 

A related question is how our estimates of TFP losses from TFPR dispersion 

compare to actual, observed TFP differences between China/India and the U.S.  We 

crudely estimate that U.S. manufacturing TFP in 1997 was 130% higher than China’s in 
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1998, and 160% higher than India’s in 1994.17  Therefore, our estimates suggest that 

resource misallocation might be responsible for roughly 49% (log(1.5)/log(2.3)) of the 

TFP gap between the U.S. and China and 35% (log(1.4)/log(2.6)) of the TFP gap between 

the U.S. and India. 

So far our calculations of hypothetical output gains from TFPR equalization 

assume a fixed aggregate capital stock.  As discussed above, output gains are amplified 

when capital accumulates to keep the rental price of capital constant.  In India’s case the 

average capital share was 50% in 1994-1995, so the TFP gains are roughly squared.  The 

same goes for China, as its average capital share was 49% in 2005.  Thus a 30% TFP gain 

in China could yield a 67% long run gain in manufacturing output, whereas a 59% TFP 

gain in India could ultimately boost its manufacturing output by 153%. 

We now provide a number of robustness checks on our baseline Table 6 

calculations of hypothetical efficiency gains from liberalization in China and India 

relative to the U.S.  We first adjust the book values of capital using a capital deflator for 

each country combined with the plant’s age.  We assume a plant’s current investment rate 

applies to all previous years of its life so that we can infer the age distribution of its 

capital stock.   The resulting “current market value” capital stocks suggest very similar 

room for TFP gains in China vs. the U.S. (29.8% vs. 30.5% baseline) and India vs. the 

U.S. (59.9% vs. 59.2% baseline). 

In our baseline calculations we also measured plant labor input using its wage bill.  

Our logic was that wages per worker adjust for plant differences in hours worked per 

worker and worker skills.  But wages could also reflect rent-sharing between the plant 

and its workers.  If so, we might be understating differences in TFPR across plants 

because the most profitable plants have to pay higher wages.  We therefore recalculate 

the gains from equalizing TFPR in China and India (relative to the U.S.) using simply 

employment as our measure of plant labor input.  Surprisingly, the reallocation gains are 

smaller in both China (25.6% vs. 30.5% baseline) and India (57.4% vs. 59.2% baseline) 
                                                 
17 We use the aggregate price of tradable goods between India and the U.S. in 1985 (from the benchmark 
data in the Penn World Tables) to deflate Indian prices to U.S. prices.  Since we do not have price deflators 
for Chinese manufacturing, we use the Indian price of tradable goods to convert Chinese prices at market 
exchange rates to PPP prices.  In addition, we assume that the capital-output ratio and the average level of 
human capital in the manufacturing sector is the same as that in the aggregate economy.  The aggregate 
capital-output ratio is calculated from the Penn World Tables and the average level of human capital is 
calculated from average years of schooling (from Barro-Lee) assuming a 10% Mincerian return.             



 20

when we measured labor input using employment.  Thus wage differences appear to 

amplify TFPR differences rather than limit them. 

We have assumed an elasticity of substitution within industries (σ) of 3, 

conservatively at the low end of empirical estimates.  Our estimated gains are highly 

sensitive to this elasticity.  China’s hypothetical TFP gain in 2005 soars from 87% under 

σ =3 to 184% with σ = 5, and India’s in 1994 from 128% to 230%.  These are gains from 

fully equalizing TFPR levels.  Our intuition is as follows: when σ is higher, TFPR gaps 

are closed more slowly in response to reallocation of inputs from low to high TFPR 

plants, enabling bigger gains from equalizing TFPR levels. 

 Our results are not nearly as sensitive to our assumption of a unitary elasticity of 

substitution between sectors.  Cobb-Douglas aggregation across sectors means that TFPR 

equalization does not affect the allocation of inputs across sectors; the rise in a sector’s 

productivity is exactly offset by the fall in its price index.  Suppose instead that final 

output is a CES aggregate of sector outputs:   
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First consider the case wherein sector outputs are closer complements ( 0.5φ = ).  The 

gains from liberalization are modestly smaller in China (82% vs. 87% in 2005) and 

appreciably smaller in India (108% vs. 128% in 1994).  The gains shrink because 1φ <  

means sectors with larger increases in productivity shed inputs.  Next consider a case 

where sector outputs are more substitutable ( 2φ = ).  In this case, the gains from 

liberalization are modestly larger in China (90% vs. 87%) and larger in India (142% vs. 

128%).  When sector outputs are better substitutes, inputs are reallocated toward sectors 

with bigger productivity gains so that aggregate TFP increases more. 

 

V. Measurement Error 
 

 Our potential efficiency gains could be a figment of greater measurement error in 

Chinese and Indian data than in the U.S. data.  We cannot rule out arbitrary measurement 
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error, but we can we try to gauge whether our results can be attributable to specific forms 

of measurement error.  One form is simply recording errors that create extreme outliers.  

For our baseline estimates (Table 6) we trimmed the 1% tails of TFPR (actually, in the 

output and capital distortions separately) and TFPQ – up to 6% of observations.  When 

we trim 2% tails (up to 12% of observations) the hypothetical TFP gains fall from 87% to 

69% for China in 2005, and from 128% to 106% for India in 1994.  Thus, measurement 

error in the remaining 1% tails could well be important, but does not come close to 

accounting for the big gains from equalizing TFPR. 

Of course, measurement error could be important in the interior of the TFPR 

distribution too.  Suppose measurement error is classical in the sense of being orthogonal 

to the truth and to other reported variables.  Then we would not expect plant TFPR to be 

related to plant ownership.  Table 7 shows that, in fact, TFPR is systematically related to 

ownership in mostly reassuring ways in China and India.  The table presents results of 

regressing TFPR and TFPQ (relative to industry means) on ownership type in China and 

India.  All years are pooled and year fixed effects are included.  The omitted group for 

China is privately-owned domestic plants, whereas in India it is privately-owned plants 

because we lack information on foreign ownership in India.  In China, state-owned plants 

exhibit 41% lower TFPR, as if they received subsidies to continue operating despite low 

profitability.18  Perhaps surprisingly, collectively-owned (part private, part local 

government) plants have 11% higher TFPR.  Foreign-owned plants have 23% higher 

TFPQ on average, but 13% lower TFPR.  The latter could reflect better access to credit or 

preferential treatment in export processing zones.  Consistent with this interpretation, 

exporting plants have 46% higher TFPQ but 14% lower TFPR.  In the U.S., exporters 

have a similar TFPQ advantage (50%) but display higher rather than lower TFPR (+6% 

on average).19 

In India, all types of plants with public involvement exhibit lower TFPR: 29% 

lower for plants owned by the central government, 8% lower for those owned by local 

governments, and 16% lower for joint public-private plants.  Public involvement also 

                                                 
18 Dollar and Wei (2007) likewise find lower productivity at state-owned firms in China. 
 
19 The high TFPQ of exporters could reflect the “demand shock” coming from accessing foreign markets, 
rather than just physical productivity. 
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goes along with 40-70% higher TFPQ, although this might reflect monopoly rights that 

guarantee demand. 

We next look at the correlation of TFPR with plant exit.   One would expect true 

TFPR to be lower for exiters.  If TFPR is measured with more error in China and India, 

the coefficient from a regression of plant exit on TFPR should be biased downwards.  

Table 8 shows that lower TFPR is associated with a higher probability of plant exit in all 

three countries.  A one log point decrease in TFPR is associated with a 1.1% higher exit 

probability in China and a 1.9% higher exit probability in India, compared to 1.1% higher 

exit probability in the U.S.  Low TFPR firms disproportionately exit in China and India, 

suggesting TFPR is a strong signal of profitability.  Of course, government subsidies 

might allow many unprofitable plants to continue rather than exit.  But that is not what 

Table 8 shows, perhaps because of the reforms underway in both countries.  The Chinese 

results partly reflect that state-owned plants are less profitable and are more likely to exit.  

But the relationship between exit and TFPR is still significantly negative (-0.8% with a 

standard error of 0.3%) when a dummy for SOEs is included. 

We can also look as the correlation of TFPQ with exit, as measurement error in 

TFPR should also show up as measurement error in TFPQ.  (Recall that log TFPR is log 

revenues – log inputs and log TFPQ is 
1

σ
σ −

log revenues – log inputs.)  Table 8 shows 

that lower TFPQ is associated with higher exit probabilities, with a stronger relationship 

in China and a weaker relationship in India when compared with the U.S.  If the true 

relationship between TFPQ and plant exit is the same in the three countries, then this 

evidence suggests less measurement error in China, but more measurement error in India 

when compared to the U.S. 

We can also directly assess the extent of classical measurement error in plant 

revenue and inputs.  If the % errors in revenue and inputs are uncorrelated with each 

other, and true elasticities are the same in all countries, then we expect lower coefficients 

in China and India when we regress log revenue on log inputs or vice versa.  We present 

such regressions in Table 9, pooling all years for a given country and measuring variables 

relative to industry means.  The elasticity of inputs with respect to revenue is 0.96 in 

India and 0.98 in China, vs. 1.01 in the U.S.  These coefficients suggest greater classical 
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measurement error might be adding 5% to the variance of log revenue in India and 3% to 

the variance in China.  The elasticity of revenue with respect to inputs is 0.82 in China, 

0.90 in India, and 0.82 in the U.S.  These coefficients suggest classical measurement 

error has the same effect on the variance of log inputs in China as in the U.S., but actually 

lowers the variance in India by 10% relative to the U.S.  Putting the two-way regressions 

together, greater classical measurement could contribute to the higher variance of TFPR 

in China, but not in India.  This evidence is not conclusive because the true elasticities 

could be lower in China and India than the U.S., but it does provide mixed evidence on 

whether there is greater measurement error in China and India relative to the U.S.   

Suppose further that, for a given plant, measurement error is less serially 

correlated than true revenue and inputs, and that the true serial correlations are the same 

for all countries.  Then we would expect the growth rates of revenue and inputs to vary 

more across plants in China and India than the U.S.  Table 10 presents the relevant 

statistics.20  Input growth actually varies much less across plants in China and India than 

the U.S.  Revenue growth, however, varies a lot more in China and India than the U.S.  

So the growth rates, too, provide mixed evidence on whether TFPR is noisier in China 

and India.  Of course, true dispersion of input growth could be lower in China and India. 

Finally, if measurement error is less persistent than true variables, then 

“instrumenting” with lagged variables should shrink efficiency gains more in China and 

India than in the U.S.  The TFP gain from fully equalizing TFPR levels falls from 87% 

under “OLS” to 72% under “IV” in 2005 China, from 127% to 108% in 1994 India, and 

from 43% to 26% in the 1997 U.S.  By this metric, measurement error accounts for a 

bigger fraction of the gains in the U.S. than in China or India.  Of course, it could instead 

be that measurement error is more persistent than true TFPR. 

To recap, the statistics in this subsection are inconclusive.  They do not provide 

clear evidence that the signal-to-noise ratio for TFPR is higher in the U.S. than in China 

and India, but neither do they entirely rule out the possibility.  In addition, we cannot rule 

out non-classical measurement error across plants as the source of greater TFPR 

dispersion in China and India. 
                                                 
20 For this and all other U.S. calculations requiring a panel, we use the Annual Survey of Manufactures 
rather than just the Census of Manufactures.  We measure input growth as the growth rate of 1s s

si siK Lα α− . 
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VI. Policies and Misallocation 
 

 If TFPR dispersion is real rather than a byproduct of measurement error, then we 

should be able to relate TFPR gaps to explicit government policies.  In this subsection we 

relate TFPR dispersion in China to state ownership of plants, and TFPR dispersion in 

India to licensing and size restrictions. 

Table 11 gives the percent of plants that are state-owned in China:  29% in 1998, 

19% in 2001, and 8% in 2005.  (In India the share of state-affiliated plants fell less 

dramatically, from 12% of plants in 1987 to 8% in 1994.)  Now, in Table 7 we 

documented roughly 40% lower TFPR at state-owned plants vs. private domestic plants 

in China.  This raises the question of how much of China’s TFPR dispersion can be 

accounted for by state-ownership.  In Table 12 we examine this relationship across the 

400 or so 4-digit industries in China.  We regress the industry variance of log TFPR on 

the industry share of plants owned by the state.  The relationship is positive and 

significant in both 1998 and 2001, with a one percent higher state share of plants 

associated with about 0.7 percent higher TFPR dispersion.  The relationship is no longer 

significant by 2005, and Figure 4 shows why.  State-owned plants have much higher 

relative TFPR in 2005 than in 2001; some of this is due to exit of the least productive 

state plants, but the figure shows a sizable increase in the relative TFPR of surviving 

plants as well.21  When we equalize TFPR only within ownership categories, the gains are 

8.2% lower in 1998 and 2.4% lower in 2005.  Therefore, of the 15% reduction in 

potential gains from reallocation in China from 1998 to 2005, we calculate that 39% 

(5.8/15.0) comes from the shrinking TFPR gap between SOEs and other plants.  

In India, misallocation within industries has often been attributed to licensing and 

size restrictions, among other government policies (see, for example, Kochar et al. 2006).  

These distortions may prevent efficient plants from achieving optimal scale and keep 

inefficient plants from contracting or exiting.  The Indian government de-licensed many 

industries in 1985 (about 40% of industries by value added share) and in 1991 (about 

                                                 
21 Among state-owned plants in 1998, those privatized by 2005 had 11% higher TFPR (and 26% higher 
TFPQ) than state-owned plants exiting by 2005. 
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42% of industries by value added share).22  India lifted its size restrictions much more 

recently (1997-2005), which unfortunately we are unable to analyze because our data 

ends in 1994-95.  Across industries during our sample, the mean share of industry value 

added subject to size restrictions was 21% with a standard deviation of 16%.23 

In Table 13 we relate the dispersion of industry TFPR to whether the industry was 

de-licensed in 1991 and to whether the industry faced size restrictions.  (We also include 

a dummy for industries de-licensed in 1985; the omitted group consists of industries not 

de-licensed in either 1985 or 1991.)  The first column shows that industries de-licensed in 

1991 exhibited less dispersion of TFPR, but not in particular for 1991 onward.  It is as if 

licensed industries had lower TFPR dispersion despite their licensing restrictions, and the 

de-licensing did not affect this.  The reason may be that many of the de-licensed 

industries were still subject to size restrictions.  The second column of Table 13 indicates 

that the variance of log TFPR is greater within industries subject to size restrictions.  We 

interact de-licensing with size restrictions and years after 1991 in the third column, and 

find that industries de-licensed in 1991 who face size restrictions do indeed display more 

TFPR dispersion from 1991 onward.  De-licensed industries not facing size restrictions 

did exhibit lower TFPR from 1991, but not significantly so. 

India’s licensing restrictions might particularly restrict the ability of plants to 

acquire inputs when their efficiency rises.  If so, then we would expect plants with rising 

TFPQ to have higher TFPR, but more so before de-licensing than afterward.  For Indian 

industries de-licensed in 1991, Figure 5 plots average log TFPR against percentiles of 

plant TFPQ growth, with both variables relative to industry means.  As predicted, the 

relationship is positive but notably flatter after de-licensing.  Whereas TFPR differed by 

1.2 log points across 90th vs. 10th percentile TFPQ growth before de-licensing, it differed 

by 0.6 log points after de-licensing. 

We find little evidence that TFPR dispersion is correlated with measures of 

geography, industry concentration, and (in India) labor market regulation.  Average 

TFPR levels differ modestly (within 10%) across Chinese provinces and Indian states, so 

that the overwhelming majority of our TFPR differences are within industry-regions.  

                                                 
22 Based on three-digit data in Aghion et al. (2008). 
 
23 The list of industries subject to size restrictions is from Mohan (2002) 
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Within industry-regions we tried without success to relate TFPR dispersion to industry 

concentration using a Herfindahl index.  For India we experimented with an index of 

labor regulation for each industry, calculated as a weighted average of the cumulative 

index of labor regulation in Besley and Burgess (2004) in each state, with weights equal 

to value added shares of each industry in each state.  This index was not significantly 

related to the variance of log TFPR across industries, whether interacting and/or 

controlling for de-licensing and 1991 onward. 

 

VII. Alternative Explanations 
 We now entertain alternative explanations for TFPR dispersion besides policy 

distortions and measurement error.  Specifically, we briefly examine varying markups 

with plant size, adjustment costs, unobserved investments (such as R&D), and varying 

capital elasticities within industries.  All of these surely contribute to TFPR dispersion in 

all three countries, but our question is whether they might explain the wider TFPR 

dispersion in China and India than in the U.S. 

 

Varying markups with plant size 

 Our CES aggregation of plant value added within industries implies that all goods 

have the same markup within industries (not to mention across industries).  Yet markups 

might be higher for bigger plants, and there may be greater size dispersion in our Chinese 

and Indian data than in the U.S. data.  Markups are distortions too, of course, but their 

dispersion may not wholly reflect policy differences between the countries.  Melitz and 

Ottaviano (2008) analyze the case of linear demand, under which the elasticity of demand 

is falling (and the markup increasing) with size.  Figure 6 shows why we did not go this 

route.  Whereas TFPR is strongly increasing in percentiles of plant size (value added) in 

India and mostly increasing in plant size in China, if anything TFPR decreases with plant 

size in the U.S.  If linear demand applied everywhere then TFPR should increase with 

size in the U.S. too.  The fact that China and India differ not only quantitatively but 

qualitatively from the U.S. suggests more than just amplification of usual U.S. forces.  
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Adjustment costs 

 Young plants might have higher TFPR on average due to adjustment costs.  If 

Chinese and Indian plants also differ in age more than U.S. plants do, differences in 

adjustment costs by age could contribute to wider TFPR dispersion in China and India.  

Figure 7 plots average log TFPR (relative to industry means) by percentile of plant age in 

each country.   TFPR steadily increases with plant age in India, contrary to this story.  In 

China TFPR rises through the youngest decile, then is flat or mildly decreasing in the 

inter-decile range before falling for the oldest decile.  Only the U.S. exhibits the predicted 

pattern of steadily falling TFPR with age. 

More generally, growing plants might have higher TFPR than shrinking plants 

due to adjustment costs.  And input growth rates may vary more in China and India, due 

to their reforms, than in the U.S. with its more stable policy environment.  Figure 8 plots 

average TFPR by percentile of plant input growth.  TFPR is increasing in input growth in 

all three countries, as predicted.  But the U.S. exhibits more variation in TFPR associated 

with input growth than do China and India.  Related, recall from Table 10 that input 

growth actually varies more across U.S. plants than across plants in China or India.  The 

U.S. displays more churning, so if anything should have more TFPR variation due to 

convex adjustment costs in input growth.24 

Input growth may vary less in China and India because its plants are hit with less 

volatile idiosyncratic shocks and/or because they face higher adjustment costs.  Cooper 

and Haltiwanger (2006) estimate idiosyncratic profitability shocks in a panel of U.S. 

plants based on regressions of log profits (actually log revenue minus (roughly) 0.5 log 

capital) on its lagged value and year dummies.  When we repeat their estimation for all 

three countries, we obtain similar estimates for the U.S. (serial correlation 0.81, 

innovation standard deviation 0.56), China (0.79 and 0.59) and India (0.84 and 0.57).  

The overall standard deviation is 1% higher for China than the U.S. and 10% higher for 

India than the U.S.  By comparison, in Table 2 the standard deviations of TFPR are over 

50% higher for China and India than the U.S.  Thus it would seem that plants in China 

                                                 
24 Another interpretation of Figure 8 is in terms of whether inputs are being reallocated to plants with 
higher TFPR.  The answer is yes in all three countries, but more so in the U.S.  This is consistent with more 
efficient resource allocation in the U.S. 
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and India face greater barriers to reallocation as opposed to bigger shocks with the same 

costs of reallocation. 

Figure 7 related average TFPR to plant age.  A related hypothesis is that young 

(or small) plants display greater dispersion of TFPR.  If plants in China/India are younger 

or smaller than U.S. plants, therefore, then one might expect them to display more 

variable TFPR.  Table 14 provides the age of the 25th, 50th, and 75th percentile plants in 

each country.  Chinese plants (median age 5 years) are younger than U.S. plants (median 

age 10 years), but Indian plants are older (median age 12 years).  Figure 9 plots the size 

(employment) distribution of plants in all three countries.  Indian plants (median size 33 

employees) are smaller than U.S. plants (median size 47 employees), but Chinese plants 

(median size 160 employees) are much larger than U.S. plants.  When we split plants into 

quartiles of size and age (respectively) and equalize TFPR only within quartiles, the gains 

are about 5% lower for both China and India.  Thus variation in TFPR by size and age 

explains only a modest amount of the overall dispersion in TFPR (see Table 3). 

 

Unobserved investments 

 Low TFPR might reflect learning by doing or other unobserved investments 

(R&D, building a customer base) rather than distortions.  If so, then we expect low TFPR 

plants to exhibit high subsequent TFPQ growth.  Figure 10 displays precisely this pattern 

in the U.S., but the opposite pattern in China and India.  Thus it is far from obvious that 

unobserved plant investments vary more in China and India than in the U.S.  If TFPQ 

growth does proxy for unobserved investments, then Figure 10 suggests such investments 

may mitigate TFPR differences in China and India. 

Perhaps related, TFPR differences are more transitory in the U.S. than in China 

and India (see the “IV” results discussed near the end of section V).  U.S. TFPR 

differences may largely reflect temporary differences in investments and adjustment 

costs, whereas TFPR differences in China and India may reflect more persistent, perhaps 

policy-related gaps that are not as reliably closed with subsequent input reallocation and 

TFPQ growth. 
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Varying capital shares within industries 

Our baseline estimates in Table 6 assumed the same capital elasticity for all plants 

within a 4-digit industry.  We inferred relative distortions from variation in capital-labor 

ratios within industries.  At the other extreme, one could attribute all variation in these 

ratios within industries to plant-specific capital shares.  Doing so and re-calculating the 

TFP gains, we find the majority of the gains in China and India relative to the U.S. stem 

from output distortions.  With plant-specific capital shares, TFP gains are still 23-45% 

(vs. 30-50% baseline) for China and 32-39% (vs. 40-60% baseline) for India.  

 

VIII. Conclusion 
 

A long stream of papers has stressed that misallocation of inputs across firms can 

reduce aggregate TFP in a country.  We used micro data on manufacturing plants to 

investigate the possible role of such misallocation in China (1998-2005) and India (1987-

1994) compared to the U.S. (1977, 1987, 1997).  Viewing the data through the prism of a 

standard monopolistic competition model, we estimated differences in marginal products 

of labor and capital across plants within narrowly-defined industries.  We found much 

bigger gaps in China and India than in the U.S.  We then entertained a counterfactual 

move by China and India to the U.S. dispersion of marginal products.  We found that this 

would boost TFP by 30-50% in China and by 40-60% in India.  Room for reallocation 

gains shrank about 2% per year from 1998-2005 in China, as if reforms there reaped 

some of the gains.  In India, despite reforms in the early 1990s, we report evidence of 

rising misallocation from 1991 to 1994. 

Our results require many caveats.  There could well be greater measurement error 

in the Chinese and Indian data than in the U.S. data.  The static monopolistic competition 

model we deploy could be a poor approximation of all three countries.  Although we 

provided reassuring evidence on these concerns, our investigation was very much a first 

pass.  In addition to investigating these issues more fully, future work could try to relate 

differences in plant productivity to observable policy distortions much more than we 

have.  Finally, we neglected the potential impact of distortions on plant entry and exit, an 

important topic for future research. 



 30

Appendix A: Lucas Span-of-Control Version 
 

In the main text we modeled manufacturing plants as monopolistic competitors, 

and related the elasticity of substitution between varieties to a large empirical literature.  

But many modelers, such as Restuccia and Rogerson (2008), follow Lucas (1978) in 

positing diminishing returns in production rather than utility.  Here we show how the two 

formulations are isomorphic for aggregate TFP for a given number of plants and 

aggregate labor input.   

Suppose labor is the sole input and there is a single sector.  The equations for 

aggregate output, firm output, and firm profits for each variety are: 
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Returns to scale equalγ and P  is the price of homogeneous output.  TFP (= Y/L here) is: 
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Here i iTFPQ A=  and 1 / (1 )i iTFPR τ= − .  This is same as our expression in the main 

text, except for two differences.  First, 1 / (1 )γ−  takes the place of ( 1)σ − .  Diminishing 

returns in production ( 1γ < ) play the same role as diminishing returns in utility ( 1σ < ).  

Second, aggregate TFP is now decreasing in aggregate labor input.  If the number of 

plants is proportional to labor input, then such aggregate decreasing returns disappear.  

Of course, a variety benefit would then exist in the CES formulation.  In terms of our 

calibration, our conservative choice of 3σ =  corresponds to 0.5γ = .  This is quite low, 

even compared to studies such as Atkeson and Kehoe (2005), who chose 0.8γ ≥  based 

on diminishing returns in both production and utility.
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        Appendix B: Generalizing TFPQ for Quality and Variety 
 

Here we sketch how our measure of TFPQ should capture not only process 

efficiency but also firm differences in quality and variety (equivalently, idiosyncratic 

demand).  For simplicity, suppose labor is the sole input and there is a single sector.  The 

equations for aggregate output, firm output, and firm profits for each variety are: 
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Here iN  is the number of symmetric varieties the firm produces, iQ  is the symmetric 

quality of each of its varieties, iA  is its process efficiency, /i iY N  is the symmetric 

quantity it produces of each variety, and iP  is the symmetric price of each variety.   For 

this economy, our method of measuring TFPQ yields  
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Measured TFPQ is a composite of process efficiency and idiosyncratic demand terms 

coming from quality and variety.  Aggregate TFP (= Y/L here) is identical to the case in 

which firms vary only in process efficiency, only with the above measure of TFPQ: 
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TFPR is as in the main text, only here it reduces to the single distortion, 1
1i

i

TFPR
τ

=
−

.  

Note that aggregate TFP (effective output per worker) is also synonymous with welfare. 
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Appendix C: Labor and Capital Distortions 
 

In the main text we estimated distortions to output ( Ysiτ ) and to capital relative to 

labor ( Ksiτ ), respectively.  An observationally equivalent characterization is in terms of 

distortions to the absolute levels of capital and labor.  Denote level distortions as *
Lsiτ  and 

*
Ksiτ , and profits as * *(1 ) (1 )si si si Lsi si Ksi siP Y wL RKπ τ τ= − + − + .  The firm’s first order 

conditions are identical to those with { Ysiτ , Ksiτ } assuming *
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latest years in China and India, the correlation matrices of these variables are: 

 
 China 2005 India 1994 
 siAΔ  *

LsiτΔ  *
KsiτΔ  siAΔ  *

LsiτΔ  *
KsiτΔ  

siLΔ  0.518 -0.202 -0.074 0.690 0.010 -0.038 
*
LsiτΔ  0.532 1 0.201 0.538 1 0.004 
*
KsiτΔ  0.592 0.201 1 0.398 0.004 1 

 
Not surprisingly, plants with high TFPQ tend to have high labor input.  More 

interestingly, plants with high TFPQ typically face higher “taxes” on both capital and 

labor.  The distortions discourage labor input, but not strongly – because, again, the 

distortions tend to be high when TFPQ would dictate high labor input.  Labor and capital 

wedges are positively correlated across plants, but only modestly so. 

Here we can entertain the thought experiment of eliminating variation in the 

capital or labor distortion individually.  For the latest year in China, the TFP gains from 

eliminating the capital (labor) distortion alone are 60% (24%) compared to 87% to 

eliminating both distortions.  In India, the gains from eliminating the capital (labor) 

distortion alone are 78% (33%) compared to 128% from eliminating both distortions.
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Table 1 
 

Dispersion of TFPQ 
 
      

China    
 1998 2001 2005   
S.D. 1.06 0.99 0.95   
75-25 1.41 1.34 1.28   
90-10 2.72 2.54 2.44   
      
N 95,980 108,702 211,304   
      
India     
 1987 1991 1994   
S.D. 1.16 1.17 1.23   
75-25 1.55 1.53 1.60   
90-10 2.97 3.01 3.11   
      
N 31,602 37,520 41,006   
      
United States    
 1977 1987 1997   
S.D. 0.85 0.79 0.84   
75-25 1.22 1.09 1.17   
90-10 2.22 2.05 2.18   
      
N 164,971 173,651 194,669   

      
 
 

Notes:  For plant i in industry s, 1( )s s

si
si

si si si

YTFPQ
K w Lα α−≡ .  Statistics are for deviations of 

log(TFPQ) from industry means.  S.D. = standard deviation, 75-25 is the difference 
between the 75th and 25th percentiles, and 90-10 the 90th vs. 10th percentiles.  Industries 
are weighted by their value added shares.  N = the number of plants. 
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Table 2 

 
Dispersion of TFPR 

    
China   

 

 
1998 

 
2001 

 
2005 

 
S.D. 0.74 0.68 0.63 
75-25 0.97 0.88 0.82 
90-10 1.87 1.71 1.59 
    
India   

 

 
1987 

 
1991 

 
1994 

 
S.D. 0.69 0.67 0.67 
75-25 0.79 0.81 0.81 
90-10 1.73 1.64 1.60 
    
United States  

 
1977 

 
1987 

 

 
1997 

 
S.D. 0.45 0.41 0.49 
75-25 0.46 0.41 0.53 
90-10 1.04 1.01 1.19 

 
 
Notes:  For plant i in industry s, 1 .

( )s s

si si
si

si si si

P YTFPR
K w Lα α−≡   Statistics are for deviations of 

log(TFPR) from industry means.  S.D. = standard deviation, 75-25 is the difference 
between the 75th and 25th percentiles, and 90-10 the 90th vs. 10th percentiles.  Industries 
are weighted by their value added shares.   Number of plants is the same as in Table 1. 
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Table 3  

 
% Sources of TFPR Variation Within Industries 

    
 

 
  Ownership Age  Size  Region 
 
 

India          0.58          1.33  3.85    4.71 
 
 
China         5.25  6.23  8.44  10.01 
 
 
 
Notes:  Entries are the cumulative % of within-industry TFPR variance explained by 
dummies for ownership (state ownership categories), age (quartiles), size (quartiles), and 
region (provinces or states).  The results are cumulative in that “age” includes dummies 
for both ownership and age, and so on. 
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Table 4  

 
TFP Gains from Equalizing TFPR Within Industries 

   
 
 

China   

 
1998 

 
2001 

 
2005 

 
% 115.1 95.8 86.6 
    
    
    
India    

 
1987 

 
1991 

 
1994 

 
% 100.4 102.1  127.5 
    

 
 

U.S.   

 
       1977 

 
  1987 

 
 1997 

 
%         36.1    30.7   42.9 
    

   
 

 

Notes:  Entries are 100(Yefficient /Y -1) where 
( 1)1

1
1

s

sS
M ssi
i

sefficient sis

AY TFPR
Y TFPRA

θ σσ −−

=
=

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∑∏  

and 1 .
( )s s

si si
si

si si si

P YTFPR
K w Lα α−≡
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Table 5 
 

% of Plants, Actual Size vs. Efficient Size 
 

 
China 2005 

 0-50% 50-100% 100-200% 200+% 
Top Size Quartile 7.0 6.1 5.4 6.6 

2nd Quartile 7.3 5.9 5.3 6.6 
3rd Quartile 8.5 6.0 5.2 5.4 

Bottom Quartile 10.5 5.9 4.5 4.2 
 
 
India 1994 

 0-50% 50-100% 100-200% 200+% 
Top Size Quartile 8.7 4.7 4.6 7.1 

2nd Quartile 10.7 4.6 4.1 5.7 
3rd Quartile 11.4 5.0 4.0 4.7 

Bottom Quartile 13.8 3.9 3.3 3.8 
 
 
U.S. 1997 

 0-50% 50-100% 100-200% 200+% 
Top Size Quartile 4.4 10.0 6.7 3.9 

2nd Quartile 4.4 9.6 5.8 5.1 
3rd Quartile 4.5 9.8 5.4 5.4 

Bottom Quartile 4.7 12.0 4.3 4.1 
 
 
 
Notes:   In each country-year, plants are put into quartiles based on their actual value 
added, with an equal number of plants in each quartile.  The hypothetically efficient level 
of each plant’s output is then calculated, assuming distortions are removed so that TFPR 
levels are equalized within industries.  The entries above show the % of plants with 
efficient/actual output levels in the four bins 0-50% (efficient output less than half actual 
output), 50-100%, 100-200%, and 200%+ (efficient output more than double actual 
output).  The rows add up to 25%, and the rows and columns together to 100%.
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Table 6  

 
TFP Gains from Equalizing TFPR relative to 1997 U.S. Gains 

   
 
 

China   

 
1998 

 
2001 

 
2005 

 
% 50.5 37.0 30.5 
    
    
    
India    

 
1987 

 
1991 

 
1994 

 
% 40.2 41.4 59.2 
    

 
 
 
Notes:  For each country-year, we calculated Yefficient /Y using 

( 1)1

1
1

s

sS
M ssi
i

ssefficient si

AY TFPR
Y TFPRA

θ σσ −−

=
=

⎡ ⎤⎧ ⎫
⎢ ⎥= ⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦
∑∏ and 1 .

( )s s

si si
si

si si si

P YTFPR
K w Lα α−≡     

 
We then took the ratio of Yefficient /Y  to the U.S. ratio in 1997, subtracted 1, and multiplied 
by 100 to yield the entries above. 
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Table 7 
 

TFP by ownership 
 
China   

 
TFPR 

 
TFPQ 

 
  State -0.415 -0.144 

 
(0.023) 

 
(0.090) 

 
  Collective 0.114 0.047 

 
(0.010) 

 
(0.013) 

 
  Foreign -0.129 0.228 
 (0.024) (0.040) 
 
 
India 
 TFPR TFPQ 

  State (Central) -0.285 
 

0.717 
 (0.082) (0.295) 
 
  State (Local) -0.081 0.425 
 (0.063) (0.103) 
 
 Joint Public/Private -0.162 0.671 
 (0.037) (0.085) 
   

 
Notes:  The dependent variable is the deviation of log TFPR or log TFPQ from the 
industry mean.  The independent variables for China are dummies for state-owned plants, 
collective-owned plants (plants jointly owned by local governments and private parties), 
and foreign-owned plants.  The omitted group is domestic private plants.  The 
independent variables for India are dummies for a plant owned by the central 
government, a plant owned by a local government, and a plant jointly owned by the 
government (either central or local) and by private individuals.  The omitted group is a 
privately owned plant (both domestic and foreign).  Regressions are weighted least 
squares with industry value added shares as weights.  Entries are the dummy coefficients, 
with standard errors in parentheses.  Results are pooled for all years.   
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Table 8 

 
Regressions of Exit on TFPR, TFPQ 

   
  
    
China 
 
     Exit on TFPR 
      

-0.011 
(0.003)      

    Exit on TFPQ 
 

 
-0.050 
(0.002)      

 
 
   

India    
 
     Exit on TFPR 
      

-0.019 
 (0.005)   

    
     Exit on TFPQ 
 

-0.027 
(0.004)   

    
U.S.   
 
     Exit on TFPR 
     

-0.011 
(0.003)   

    
     Exit on TFPQ 
 

 -0.039 
 (0.002)   

    
     
 
Notes:  The dependent variables are dummies for exiting plants.  The independent 
variables are the deviation of log(TFPR) or log(TFPQ) from the industry mean.  
Regressions are weighted least squares with the weights being industry value added 
shares.  Entries above are the coefficients on log(TFPR) or log(TFPQ), with S.E. 
referring to their standard errors.  Regressions also include a quartic function of plant age.  
Results are pooled for all years.   
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Table 9 
 

Regressions of Inputs on Revenue, Revenue on Inputs 
 
 
     China  India   U.S. 
 
  Inputs on Revenue    0.98    0.96   1.01 
 
  Revenue on Inputs    0.82    0.90   0.82 
 
 
Notes:  Entries are the coefficients from regressions of log si siP Y  on log 1( )s s

si siK wLα α−  
(revenue on inputs) and log 1( )s s

si siK wLα α− on log si siP Y  (inputs on revenue).  All variables 
are measured relative to the industry mean, with industries weighted by value-added 
shares.  Results are pooled for all years. 
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Table 10 
 

Dispersion of Input and Revenue Growth 
 
 
        China 
     Inputs  Revenue    
   
       S.D.      0.45       1.00 
 
       75-25      0.34       0.93   
 
 
       India 
     Inputs  Revenue 
  
        S.D.      0.28       0.70 
 
   75-25    0.24       0.60 
 
 
     U.S. 
     Inputs  Revenue 
 
        S.D.             0.68       0.43   
   
   75-25    0.43       0.32 
 
 
Notes:   Entries are the standard deviation (S.D.) and inter-quartile range (75-25) of 

log si sid P Y  and 1log ( )s s
si si sid K w Lα α− .   All variables are measured relative to the industry 

mean, and with industries weighted by their value added shares.  Entries are pooled for 
all years. 
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Table 11 
 

Ownership of Indian and Chinese Plants 
 

China 
           1998  2001  2005 

  Private Domestic   15.9   37.4   62.5 
 
  Private Foreign   20.0   21.7   21.9 
 
  State     29.0   18.5    8.1 
 
  Collective    35.1   22.4    7.5 
 
 
India 

           1987  1991  2004 
 
  Private     87.7   88.4   92.4 
 
  State (Central Gov.)   3.3   3.3    2.4 
 
  State (Local Gov.)   3.9   3.0    2.8 
 
  Joint Public/Private   5.1   5.4    2.4 
 
 
Notes:  Entries are the percentage of the number of plants in each ownership category in 
the sector, where each sector is weighted by the value-added share of the sector.  Each 
column adds to 100.      
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 Table 12 
 

Regressions of Sector TFPR Dispersion on  
State Ownership in China 

 
 
     1998  2001  2005  1998- 2005 
            
State Ownership  0.766 0.659  0.025      0.300 
Share   (0.165)      (0.153)        (0.213)    (0.080)  
 
 
Year F.E.      NO    NO    NO       YES 
 
Sector F.E.    NO    NO    NO       YES 
  
N     406   403   407       3,237 
 
 
 
Note:  Entries are coefficients from regressions of the variance of log TFPR in sector s on 
the variance in sector s of an indicator variable for a state owned plant.  All regressions 
are weighted by the value-added weights of the sector.  Standard errors are clustered by 
sector in column 4.   
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Table 13 
 

Regression of Sector TFPR Dispersion  
on De-licensing and Size Restrictions in India 

 
(1)         (2)      (3)  

 
De-licensed 1991    -0.298         -0.298 
     (0.117)         (-.117) 
 
De-licensed 1991 x   0.032         -0.056 
post 1991             (0.036)         (0.040) 
 
Size restriction            0.368 
             (0.173) 
 
De-licensed 1991 x            0.415 
post 1991 x                    (0.120) 
size restriction 
 
 
Notes:  The dependent variable is the variance of log TFPR in sector s in year t.  Entries 
are coefficients on the following independent variables:  1) de-licensed 1991: indicator 
for whether industry was de-licensed in 1991; 2) de-licensed 1991 x post 1991: product 
of an indicator for an industry de-licensed in 1991 and an indicator for observations after 
1991; 3) size restriction: percentage of value-added of an industry subject to reservations 
for small firms and; 4) de-licensed 1991 x post 1991 x size restriction: product of size 
restriction, indicator variable for observations after 1991, and a dummy variable for 
industries de-licensed after 1991.  All regressions include indicator variables for year 
(1987 through 1994) and are weighted by the value-added share of the sector.  
Regressions (1) and (3) also include a dummy for industries de-licensed in 1985.  The 
omitted group consists of industries not de-licensed in either 1985 or 1991.  Standard 
errors are clustered by sector.  Number of observations = 2,644. 
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Table 14 

 
Distribution of Plant Age 

(Percentiles) 
 
 
          25th   50th   75th 
 
China  2   5   22 
 
India   6   12   22 
 
U.S.   5   10   25 
 
 
 
 
 
 
 
 
 
Notes:  Entries are the 25th, 50th, and 75th percentile distribution of plant age in 
a sector, where each sector is weighted by the value-added share of the sector. 
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